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The effects of ageing treatments on transformation temperatures, hardness, and precipitation 
kinetics in a Cu-14.2Zn-8.5AI  (wt%) shape-memory alloy were investigated. Quench-ageing 
treatment temperatures varied from 100 to 500~ with times up to 200 h after the solution 
treatment. The martensitic transformation temperature, Ms, of the hot-rolled material was 
decreased from 55 to 51 ~ by the solution treatment. The temperature hysteresis (Af - Mf) 
was 50 ~ C for the hot-rolled condition, but was reduced to 30 ~ C after the solution treatment. 
The maximum hardness for material aged at 500 ~ was lower than that for that aged at 300 
or 400 ~ C. The apparent activation energy for hardness increase in this alloy was 110kJ mo1-1, 
compared with 72kJ mo1-1 for the similar copper-based shape-memory alloy Cu -21 .2Zn -  
6.0AI. The ordering temperatures for B2 and DO3 superlattices were in the neighbourhood of 
480 and 260 ~ C, respectively. The tensile ductility and yield strength of this alloy were signifi- 
cantly reduced by the ageing treatment at 400 ~ C. 

1. Introduction 
Copper-based shape-memory alloys are particularly 
interesting compared to other shape-memory alloys 
because of their lower cost and relative ease of 
processing [1, 2]. At elevated temperatures, the 
metastable beta-prime phases (9R, 18R, 2H marten- 
sites) and beta-1 phases (B2, DO3 superlattice) in the 
alloys transform to more stable structures by ther- 
mally activated processes [3]. It is therefore possible 
for these copper-based alloys to exhibit degradation of 
shape-memory capacity when thermally cycled [4]. 

The Cu-Zn A1 alloys reveal 9R or 18R martensite 
depending on the quenching conditions after solution 
treatment [5]. The effects of ageing on various proper- 
ties in Cu-Zn-A1 shape-memory alloys have been 
reported by several investigators [6-8]. For example, 
Kennon et al. [6] have recently reported the effect of 
ageing between 200 and 450 ~ C for times up to about 
280h on hardness, shape-recovery capacity, trans- 
formation temperatures and lattice parameters in a 
Cu-21.2Zn-6.0A1 (wt%) alloy. They showed that 
transformation temperatures (Ms, As, At) decreased 
with ageing time by the formation of alpha and 
gamma-2 precipitates in the alloy. They also predicted 
about 43 days of shape-memory life for the alloy with 
respect to the beta-phase stability at 100 ~ C. Cook and 
Brown [7] also observed a decrease of Ms in a 
quenched Cu 26 Zn-4  A1 alloy by ageing between 60 
and 140 ~ C. Schofield and Miodownik [8] reported a 
depression of Ms by ageing after solution treatment at 
850 ~ C in Cu-26.9 Zn-3.9 A1 and Cu-33.0 Zn-l .7  A1 
(wt %) alloys. 

Martensite transformation temperatures and precipi- 

tation kinetics are very sensitive to zinc or aluminium 
content in Cu-Zn-A1 shape-memory alloys [9]. Since 
the loss of shape memory is attributed to the forma- 
tion of precipitates, the control of precipitation and its 
kinetics through alloy composition or processing is 
important in the increase of shape-memory life in 
Cu-Zn  A1 alloys. 

In this work, the effects of ageing treatments on 
transformation temperatures (Ms, Mr, A~, Af), micro- 
hardness, tensile behavior and precipitation kinetics in 
a Cu-14.2Zn 8.5A1 (wt %) alloy were investigated. 
Ageing temperatures ranged from 100 to 500~ with 
time up to 200 h. The apparent activation energy was 
obtained from an Arrhenius plot of time to obtain 
50% of maximum hardness against ageing tempera- 
ture. The critical transition temperatures for B 2 and 
DO 3 orderings in the alloy were calculated using for- 
mulae given by Inden and Pitch [10] and interchange 
energies given by Rapacioli and Ahlers [11]. The ten- 
sile properties of the alloy were also measured before 
and after ageing treatments. 

2. Experimental procedure 
Alloy having a composition (wt %) of Cu-14.2Zn 
8.5 A1 was melted in a graphite crucible under a reduc- 
ing atmosphere using a high-frequency induction fur- 
nace. The 5 kg melt was poured into an iron mould of 
5 cm • 5 cm x 17 cm. The ingot was subjected to a 
homogenizing heat treatment for 24 h at 800~ in an 
inert atmosphere. The homogenized ingot was hot- 
forged to 15mm x 18mm x 1000mm plate after 
heating for 1 h at 900 ~ C. The hot-forged plate was 
subjected to hot rolling in four passes after heating for 
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1 h at 850 ~ C. The total reduction ratio in the rolling 
was 88%, with final thickness 1.6 mm. 

Specimens for transition-temperature measure- 
ments had dimensions 4ram x 1.6mm x 130mm. 
The specimens were solution-treated at 850~ and 
then quenched in iced water. In order to find the effect 
of solution treatment time on transformation tem- 
peratures, the solution treatment was varied from 5 to 
35 min at 850 ~ C. Low-temperature ageing treatments 
for 10h at 100, 140, 180 and 220~ were conducted 
after the solution treatment (35rain at 850 ~ C) and 
quenching. The martensitic transformation tempera- 
tures (A~, M~, Af, M0 and ordering temperatures (T~, 
TD%) were measured by electrical resistivity changes. 
The heating rate was 5~ min-~ and the cooling rate 
was 7.5 ~ C min -1. For Vickers microhardness measure- 
ments, the solution-treated samples were aged for 
times up to 30 h at 300, 400 and 500 ~ C. Tensile tests 
were performed at room temperature for samples aged 
for various times at 400 ~ C. The ageing treatment was 
carried out in a salt bath containing 40% NaNO2 + 
60% KNO3. 

In order to analyse the precipitates formed, X-ray 
diffraction and energy-dispersive spectroscopic analy- 
sis (EDAX) were performed on the aged samples after 
polishing and etching with HC1 + FeC13 solution. 
C u K a  radiation was used at 30 kV and 20 mA for the 
X-ray diffraction. 

3. Results and discussion 
The effect of  the solution treatment time at 850 ~ C on 
martensitic transformation temperatures is shown in 
Fig. 1. Ms for the hot-rolled and subsequently air- 
cooled sample was 55 ~ C. Ms decreased by 4~ with 
increasing solution treatment time at 850 ~ C. Ms was 
stabilized at 51~ after about 30 min at 850 ~ C. Typi- 
cal curves of  electrical resistance against temperature 
for hot-rolled material and solution-treated material 
are given in Fig. 2. The temperature hysteresis 
(Ar - Mr) was 50~ for the hot-rolled material, and 
that of solution-treated material was 30 ~ C. Ms, Mr, A~ 
and Af for the as-hot-roiled material were 55, 29, 58 
and 79~ while those for the solution-treated 
material were 51, 34, 42 and 64 ~ C, respectively. The 
M~ of 5 1 ~  for solution-treated material was higher 
than the value of 45 ~ C predicted by the relationship of 
Pops and Ridley [12]. 

The effect of quench-ageing treatment on trans- 
formation temperatures was studied after low- 
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Figure 2 Resistivity variation during martensite transformation: 
(---) as-hot-rolled specimen, (--) specimen annealed for 35 rain at 
850 ~ C. 

temperature ageing. The variation of M~ and A~ at 
ageing temperatures of 100, 140, 180 and 220~ for 
10h is shown in Fig. 3. M~ and A, decreased with 
increasing ageing temperature. For example, Ms 
decreased by 5 ~ C upon ageing for 10 h at 220 ~ C. The 
decrease of Ms by low-temperature ageing was consis- 
tent with the results for Cu-21.2Zn-6.0A1 (wt%) 
obtained by Kennon et al. [6], and in Cu026 Z n - 4  A1 
by Cook and Brown [7]. Schofield and Miodownik [81 
explained the shift of martensitic temperature in 
Cu-26.9Zn-3.9A1 (wt%) shape-memory alloy by 
changes in the degree of long-range order present in 
the parent phase. The disordered beta-phase (A2) 
present at high temperature transforms to beta-I 
phases (B2 and D O  3 superlattices) on cooling, and then 
transforms into beta-prime martensitic phases (9R or 
18R type) on further cooling [3]. Schofield and 
Miodownik [81 proposed that the depression in marten- 
sitic transition temperature was attributable to resi- 
dual quenched-in disorder from the B2 to DO3 order- 
ing reaction. 

Using the Bragg-Will iam-Gorski  model of  long- 
range ordering theory and following the method of 
Indens and Pitch [10], the ordering temperatures of B 2 
and D O  3 ordering were calculated using interchange 
energies by Rapacioli and Ahlers [11]. The ordering 
temperature of B 2 (TB2) was 500 ~ C, while that of  D O  3 

(TDo3) was 280~ in this Cu-14.2Zn-8.5A1 (wt %) 
alloy. The critical ordering temperatures were also 
measured by electrical resistivity changes in the 
present work. Fig. 4 shows the variation of resistivity 
with temperature, The experimental value of TB2 was 
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Figure 1 Variation of martensitic transformation temperature as a 
function of solution treatment time at 850~ (O) M~, (A) 
(Af- M0. 

6O 
? 
"~ 50 

40' 
E 
Q) 

30 

I l I I 

I00 140 180 220 
Ageing temperature(~ 

Figure 3 Variation of martensitic transformation temperature with 
ageing temperature (for 10h at each temperature): (o) Ms, (a) As. 
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Figure 4 Variation of resistivity with temperature on cooling: 
TD% = transition temperature for DO3 superlattice, TB2 = tran- 
sition temperature for B2 superlattice. 

480 ~ C, and that of  TDo 3 was 260 ~ C. The agreement 
between calculated and experimental values was good. 
The ageing temperature of  220~ is below the tran- 
sition temperature of  B2 to DO3. However, a partially 
ordered structure exists at room temperature in the 
alloy since complete disorder cannot be obtained even 
by drastic quenching. During ageing treatments, a 
transition occurs from B2 to DO 3 order by thermally 
activated motion of quenched-in vacancies, thereby 
changing the order parameter.  The order parameter  
varies by an interchange of atoms, which is accom- 
plished by the motion of  quenched-in vacancies. 
Measurements on B 2 ordering in beta-brass [13] have 
shown that the Bragg-Wil l iams ordering parameters 
change with temperature. Therefore, it was likely that 
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Figure 5 Variation of  microhardness with holding time at different 
temperatures: fin) 300, (Lx) 400, (o)  500 ~ C. 

the change in the degree of order in the DO3 phase also 
affected the change in Ms in the present work. 

Samples for microhardness measurement were 
solution-treated for 35 rain at 850 ~ C, quenched, and 
then aged at 300, 400 and 500 ~ C for times up to 30 h. 
The effect of  ageing conditions on the Vickers hard- 
nesses is shown in Fig. 5. Since the precipitation rate 
is dependent on temperature, the time to increase the 
hardness was shortest at 500 ~ C, and was longest at 
200 ~ C. However, the maximum hardness produced at 
500 ~ C was lower than the maximum hardnesses at 300 
and 400 ~ C. One cause of  the reduction in the maxi- 
mum hardness at 500 ~ C was the coarsening of precipi- 
tates at 500 ~ C, which was confirmed by X-ray diffrac- 
tion. It  may also be attributed to a structural change 
of  the matrix from ordered to disordered structure, 
since the ageing temperature of  500 ~ C was near to the 
transition temperature of  disordered A 2 to B2 order- 
ing. 

X-ray analyses were performed to identify the 
nature of  the precipitates formed during ageing treat- 
ments. Diffraction patterns from samples aged for 2 h 
at 300 and 400 ~ C were consistent with those of alpha 
and gamma-2 precipitates observed in C u - Z n - G a  
alloy by Govila [14]. The lattice parameter  of  the 
alpha phase was 0.408 nm and that of  the gamma-2 
phase was 0.967 nm. It was also found that the X-ray 
diffractions of  samples aged at 500~ were not dif- 
ferent from those of samples aged at 300 and 400 ~ C. 

Figure6 Optical microstructures of  Cu-14.2Zn-8.5A1 shape- 
memory alloy: aged for (a) l h at 300~ (b) 15rain at 400~ (c) 
30 min at 500 ~ C. 
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Figure 7 Arrhenius plot of the time to 50% of maximum hardness 
against temperature. 

This result confirms the earlier interpretation of a 
reduction in hardness by precipitate coarsening at 
500 ~ C. 

Fig. 6 shows the optical microstructures of  samples 
aged for 1 h at 300 ~ C (Fig. 6a), 15 min at 400 ~ C (Fig. 
6b) and 30 min at 500 ~ C (Fig. 6c). They exhibited very 
coarse grains, about 2 to 3 mm in diameter. With 
increasing temperature and time, gamma-2 and alpha 
precipitates formed along grain boundaries as well as 
in the matrix. EDAX showed that the major grain- 
boundary precipitate was gamma-2 phase, while the 
intragranular precipitates were a mixture of alpha and 
gamma-2 phases. Hornbogen and Warlimont [15] 
reported that the initial product of isothermal trans- 
formation in beta C u - Z n  alloy was similar to the 
bainite in steel. The bainitic structure, containing 
stacking faults induced by a lattice-invariant shear, 
transformed to alpha-phase by a thermally activated 
process. 

In order to estimate the apparent activation energy 
for increase in hardness, an Arrhenius plot of the time 
needed to obtain 50% of maximum hardness against 
ageing temperature was made, as in Fig. 7. The appar- 
ent activation energy was found to be l l 0 k J m o l  1, 
which was significantly lower than the activation 
energy for diffusion, 150 to 200 kJ mol 1, in similar 
copper alloys [16]. However, the apparent activation 
energy of this alloy, 110 kJ mo1-1, was higher than the 
reported activation energies in similar C u - Z n - A I  
shape-memory alloys [6, 7]. Kennon et al. [6] reported 
an activation energy of about 72 kJ mo1-1 in C u -  
21.2 Zn-6 .0  A1 (wt %) shape-memory alloy, while an 
activation energy of  about 65 kJ tool-] was reported in 
C u - 2 6 Z n - 4 A 1  by Cook and Brown [7]. The inter- 
pretation of our value for the activation energy is not 
yet clear. However, the fact that the apparent acti- 
vation energy is significantly lower than the activation 
energy for diffusion may indicate that the thermally 
activated process was most likely enhanced by a super- 
concentration of quenched-in vacancies, as proposed 
by Clark and Brown [17]. 

2714  

"-6 250 
3- 

p aoo 

15o 

I00 

4 0 8 12 16 
Time (rain) 

8 

7 - -  
6Y- 

r  

5 o k~ 
C3 

4 r  

2 

Figure 8 Variation of(O) yield stress and (D) tensile elongation with 
heat treating time at 400 ~ C. 

It is interesting to note that the time to increase 
hardness in this alloy is considerably longer than that 
of the similar copper-based alloy reported by Kennon 
et al. [6]. For  example, the time to increase hardness 
appreciably in our alloy at 400~ was about 10 4 sec, 
compared with about 5 x 102sec in C u - 2 1 . 2 Z n -  
6.0 A1 [6]. The results obtained for Cu-21.2  Zn-6 .0  AI 
by Kennon et  al. [6] also showed that, at 300 and 
400 ~ C, the times to reach maximum hardness were 
about equal to the times to decrease the shape- 
memory effect, while at 200 ~ C the time to reach only 
50% of maximum hardness was about equal to the 
time to decrease the shape-memory effect. The effects 
of ageing treatment on shape-memory life in this alloy 
have not been studied. However, the fact that the time 
to increase hardness is considerably longer than that 
of  the similar copper-based alloy [6] may indicate that 
this alloy possesses a longer shape-memory life than 
that predicted for other copper-based shape-memory 
alloys by Kennon et  al. [6]. 

Tensile tests of samples aged at 400 ~ C showed that 
the yield strength and tensile elongation were greatly 
reduced with increasing ageing time; the yield stress 
(0.2% offset) decreased from 290 to 193 MPa, and the 
elongation reduced from 5.5 to 0.2% after 15min 
(Fig. 8). 

4 .  C o n c l u s i o n s  
1. The value of  Ms for hot-rolled alloy (Cu-14.2 Z n -  

8.5A1) was decreased from 55 to 51~ by solution 
treatment at 850~ for 35 rain. 

2. The temperature hysteresis (Af - Mr) was 50 ~ C 
for the hot-rolled condition, and that after solution 
treatment was 30 ~ C. 

3. Ms for the solution-treated condition (51 ~ C) 
decreased by 4~ upon ageing for 10h at 220 ~ C. 

4. The critical ordering temperature for B2 was 
480 ~ C, and that for DO 3 was 260 ~ C. 

5. The maximum hardness of  material aged at 
500 ~ C was lower than the hardness for ageing at 300 
or 400 ~ C, due to the coarsening of precipitates at 
500 ~ C. 

6. The precipitates formed at 300, 400 and 500~ 
were alpha and gamma-2 phases. 

7. The activation energy to increase the hardness 
was 110 kJmol  -], which was higher than that for 
Cu-21.2  Zn-6 .0  A1 alloy, 72 kJ tool -l. 



8. The time to increase hardness upon ageing was 
much longer than that for Cu 21 .2Zn-6 .0A1  alloy. 

9. Ageing at 400 ~ C greatly reduced the yield strength 
as well as the tensile elongation. 
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